Dsy Network www | forum | my | didattica | howto | wiki | el goog | stats | blog | dona | rappresentanti
Homepage
 Register   Calendar   Members  Faq   Search  Logout 
.dsy:it. : Powered by vBulletin version 2.3.1 .dsy:it. > Didattica > Corsi A - F > Calcolo delle probabilità e statistica matematica > Cerco Soluzione Tema D'esame 24.06.2004
Pages (2): « 1 [2]   Last Thread   Next Thread
Author
Thread    Expand all | Contract all    Post New Thread    Post A Reply
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

da una nota prorietà P(|g(x)|<= k) >= E[g(x)]/k per qualsiasi variabile aleatoria X avente valore atteso ux e varianza var(x) Quindi se pongo g(x) = K *(X- E(D))^2. Ma non ne sono sicuro

05-02-2009 12:13
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

2.a : sappiamo che Dn = (1/N∑Di) e quindi calcoliamoci questo valore atteso E[(1/N∑Di)] = 1/n E[∑Di] = 1/n ∑ E[Di] = 1/n * n E[Di] = E[D]. Questo segue da un semplice fatto che le variabili casuali hanno la stessa distribuzione, sono indipendenti e dalle note proprietà del valore atteso. Stesso discorso per quanto riguarda la varianza . Dobbiamo calcolare var(1/N∑Di) = ∑var(1/n Di) + 2∑∑cov(Di,Dj). dove la prima sommatoria è estesa per tuti gli che vanno da 1 a n , mentre le altre due sommatorie sono estese alla condizione che i è diverso da j. Sapendo che per le variabili casuali indipendenti cov(Xi,Xj) = 0, la varianza var(1/N∑Di) = ∑var(1/n Di) per tutti gli i che vanno da 1 a n. semplificando la sommatoria ∑var(1/n Di) = (1/n^2) * n * var(Di) = 1/n var(Di) = 1/n * var(D). L'espressione è ottenuta applicando le diverse proprietà della varianza e sapendo che le diverse variabile Di sono indipendenti e identicamente distribuite

05-02-2009 12:33
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

punto 3.2.b a pagina 240 del mood c'e la dimostrazione della nota disequaglianza di Tchebycheff e si arriva ad un certo punto in cui compare il secondo membro simile a quello che troviamo nella nostra espressione. Basta sostituire i vari valori nel secondo membro della regola generale ottenendo quindi il secondo membro della diseguaglianza. In pratica 1- ((varianza(Dn)/ €^2). Quindi varianza(dn)= (1/n)varianza(D) -------> 1- ((1/n)*var(D))/(s*√var(d))^2) = 1 - ((1/n*var(d)/s^2 * var(D)) e semplificando opportunamente ottengo il secondo membro della disequazioni 1 - (1/n*s^2) occhio alle parentesi !!!!

05-02-2009 12:53
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

X(d) è Poissiana se esiste un numero potivo v >= 0 tale che
le condizioni fondamentali affinche X(d) sia una variabile di Poisson sono queste:
- la probabilità di inontrare un cespuglio in una distanza d chilometri è approssimativamente uguale a vd + o(d) dove v è il numero medio di cespugli incontrate in una distanza di d kilometri.
- la probabilità di incontrare due o più cespugli in una distanza d chilometri è trascurabile rispetto alla probabilità di trovare un cespuglio in una distanza di d kilometri è approsimativamente pari a vd.
- il numero di cespugli che si trovano in distanze di d chilometri diversi e non sovrapponibili è indipendente.

05-02-2009 13:01
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

riprendendo il punto 1.1. dove abbiamo trovato l'espressione della legge di probilità della variabile X(d) che riproponiamo qui di seguito : ((e^-vd) * ((vd)^x) / x !). Adattandola alla nostra formula e sostituendo ad d il valore di 1 e a x il valore k .Otteniamo :
((e^-v) *(v^k) / k!))

05-02-2009 13:11
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

3.a : Y = c * X(1) dove questa espressione è ottenuta dicendo che il guadagno è pari al numero di cespugli raccoli percorrendo un sentiero di un chilometro e il guadagno che mi aspetta per ogni cespuglio venduto . Quindi Y=2 * X(1).

05-02-2009 13:16
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

3.b ci dobbiamo preoccupare di calcolare il valore atteso uy, quindi il valore uy= E(2* X(1)) = 2 * E(X(d)) = 2 * v * d = 2 * v . Questo si ottiene applicando le proprietà di valore atteso e sostituendo a d il valore 1 in quanto la distanza è uguale a 1.

05-02-2009 13:20
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

3.c la varianza di y è var (Y) = var(2*(X(1)) = 4 * var(X(1)) = 4 * var(X(1)). Sappiamo che la varianza var(d) = v*d implica che var(Y) = 4* v. Se c'e qualche errore.... ditemelo

05-02-2009 13:24
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

3.d : la probabilità cercata è di 0,96 (ma anche in questo caso non ne sono sicuro !!!)

05-02-2009 13:36
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

4.a : La stima del guadagno atteso di una passeggiata uy è data da (4+ 0+8+ 0+ 0+ 6+6+2+ 4+2) / 10 = 3,2 euro. Il tutto si ottiene semplicemente dividendo il guadagno complessivo e il numero di passeggiate effettuate. Questo corrisponde quindi a calcolare la media campionaria dei valori rappresentati in tabella.

4.b La stima della varianza di Y è 1/9 * [1,8-3,2+4,8-3,2-3,2+2,8+2,8-1,2+1,8-1,2] = 0,22 ma su questo secondo punto non sono sicuro !!!

05-02-2009 13:49
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

n>= (0,22) / ((1/4) * 0,22) * 0,05) = n >= 80 ma non ne sono sicuro

05-02-2009 13:58
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

secondo voi passero statistica ???

05-02-2009 13:59
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
donivl16
.fedelissimo.

User info:
Registered: Jul 2006
Posts: 56 (0.01 al dì)
Location: milano
Corso: informatica
Anno: primo
Time Online: 1 Day, 14:19:26 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

ma devi essere sempre sicuro in statistica :D a parte che nessuno nn e sicuro sugli esercizi che fa :D scerzi a parte: in bocca lupo a tutti e a me :D

05-02-2009 20:19
Click Here to See the Profile for donivl16 Click here to Send donivl16 a Private Message Find more posts by donivl16 Add donivl16 to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
Collapse
middu
.arcimaestro.

User info:
Registered: Oct 2002
Posts: 466 (0.05 al dì)
Location:
Corso:
Anno:
Time Online: 4 Days, 16:14:21 [...]
Status: Offline

Post actions:

Edit | Report | IP: Logged

ma come puoi scherzare su queste cose

05-02-2009 20:22
Click Here to See the Profile for middu Click here to Send middu a Private Message Find more posts by middu Add middu to your buddy list Printer Friendly version Email this Article to a friend Reply w/Quote
All times are GMT. The time now is 15:11.    Post New Thread    Post A Reply
Pages (2): « 1 [2]   Last Thread   Next Thread
Show Printable Version | Email this Page | Subscribe to this Thread | Add to Bookmarks

Forum Jump:
Rate This Thread:

Forum Rules:
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts
HTML code is OFF
vB code is ON
Smilies are ON
[IMG] code is ON
 

Powered by: vBulletin v2.3.1 - Copyright ©2000 - 2002, Jelsoft Enterprises Limited
Mantained by dsy crew (email) | Collabora con noi | Segnalaci un bug | Archive | Regolamento | Licenze | Thanks | Syndacate
Pagina generata in 0.064 seconds (67.14% PHP - 32.86% MySQL) con 23 query.